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fibroxanthomas and pleomorphic dermal 
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Abstract 

Background: Atypical fibroxanthomas (AFX) and pleomorphic dermal sarcomas (PDS) are lesions of the skin with 
overlapping histologic features and unspecific molecular traits. PDS behaves aggressive compared to AFX. Thus, a 
precise delineation, although challenging in some instances, is relevant.

Methods: We examined the value of DNA‑methylation profiling and copy number analysis for separating these 
tumors. DNA‑methylation data were generated from 17 AFX and 15 PDS using the Illumina EPIC array. These were 
compared with DNA‑methylation data generated from 196 tumors encompassing potential histologic mimics like 
cutaneous squamous carcinomas (cSCC; n = 19), basal cell carcinomas (n = 10), melanoma metastases originat‑
ing from the skin (n = 11), leiomyosarcomas (n = 11), angiosarcomas of the skin and soft tissue (n = 11), malignant 
peripheral nerve sheath tumors (n = 19), dermatofibrosarcomas protuberans (n = 13), extraskeletal myxoid chondro‑
sarcomas (n = 9), myxoid liposarcomas (n = 14), schwannomas (n = 10), neurofibromas (n = 21), alveolar (n = 19) and 
embryonal (n = 17) rhabdomyosarcomas as well as undifferentiated pleomorphic sarcomas (n = 12).

Results: DNA‑methylation profiling did not separate AFX from PDS. The DNA‑methylation profiles of the other cases, 
however, were distinct from AFX/PDS. They reliably assigned to subtype‑specific DNA‑methylation clusters, although 
overlap occurred between some AFX/PDS and cSCC. Copy number profiling revealed alterations in a similar fre‑
quency and distribution between AFX and PDS. They involved losses of 9p (22/32) and 13q (25/32). Gains frequently 
involved 8q (8/32). Notably, a homozygous deletion of CDKN2A was more frequent in PDS (6/15) than in AFX (2/17), 
whereas amplifications were non‑recurrent and overall rare (5/32).
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Background
Sarcomas of the skin and the adjacent soft tissue com-
prise a heterogeneous tumor group [1]. The classifica-
tion of these tumors follows the lineage differentiation 
of tumor cells, which is predominantly assessed by their 
expression of lineage specific markers. However, in many 
cases an unambiguous subtype assignment by histo-
logic and immunohistochemical means is not possible, 
and molecular analyses for establishing a final diagnosis 
is required [2]. Unfortunately, certain entities also lack 
unequivocal molecular traits, even if more sophisticated 
molecular approaches such as next generation sequenc-
ing are applied. Atypical fibroxanthomas (AFX) and 
pleomorphic dermal sarcomas (PDS) belong to the afore-
mentioned group of ill-defined tumors and currently 
remain a diagnosis of exclusion [3].

AFX and PDS exhibit overlapping histologic features 
making a reliable distinction in many cases problematic 
[4]. The most important criterion in favor of the diag-
nosis PDS is an invading growth pattern into subdermal 
structures, which can be difficult to assess if small biop-
sies are provided for histopathological diagnostics [5]. 
Other diagnostic histologic features include necrosis, 
lymphovascular and perineural invasion. However, gen-
eral features of anaplasia such as nuclear pleomorphism 
and atypical mitoses are common to both AFX and PDS 
[6, 7]. The distinction of AFX and PDS as different enti-
ties remains clinically important. AFX has an overall 
favorable biological behavior compared to the much 
higher potential for recurrence and metastasis in PDS 
[3, 6, 7]. Novel diagnostic approaches allowing a clear 
distinction of AFX and PDS would be of great value con-
sidering the steadily increasing incidence of skin cancers 
[8] and promising results of targeted therapies for certain 
dermal tumor subtypes [9, 10].

DNA-methylation profiling has evolved as a powerful 
method for determining cell differentiation. Array-based 
epigenotyping technologies nowadays enable large-scale 
high-throughput studies of DNA methylation patterns. 
The study of DNA-methylation in different cancers has 
already revealed molecular subgroups within known his-
tologically defined tumor types [11–18] and led addition-
ally to the discovery of new tumor types based on unique 
molecular features [19, 20]. Recently it has been shown to 
have great diagnostic capabilities determining the lineage 

of small blue round cell tumors not otherwise specified 
[21], cancers of unknown primary [22] and nervous sys-
tem tumors [23].

AFX and PDS are generally believed to be of mesen-
chymal lineage, although a few studies have suggested an 
epithelial origin [24, 25]. Detailed DNA-methylation pat-
terns in AFX and PDS have not been reported yet. We 
therefore performed genome-wide methylation profiling 
and copy number analysis of AFX, PDS and potential his-
tologic mimics, with a focus on cutaneous squamous car-
cinomas (cSCC) and basal cell carcinomas (BCC) of the 
head and neck, alongside of melanomas and 11 soft tissue 
tumor entities.

Materials and methods
Sample selection
In total, 228 tumor specimens from different patients, all 
prototypical examples of their corresponding subtype, 
were included (Additional file  1: Table  S1). AFX, PDS, 
cSCC and BCC were collected from the Dermatopa-
thology Bodensee in Friedrichshafen (Germany) and the 
Department of Dermatology of the University Hospital 
in Essen (Germany). Melanomas and soft tissue tumors 
were collected from the Institute of Pathology of the Uni-
versity Hospital in Heidelberg (Germany), in Kiel (Ger-
many), in Jena (Germany), in Nijmegen and in Rotterdam 
(both the Netherlands), from the Institute of Pathology in 
Bamberg (Germany) and from the Department of Pathol-
ogy of the Laboratoire National de Santé (Luxembourg). 
Diagnoses were based on standard histopathological 
criteria in conjunction with immunohistochemical and 
molecular analyses according to the current WHO clas-
sification [1]. The methylation data of melanomas and 
some soft tissue tumors were published previously [12, 
15, 21].

DNA extraction
DNA was extracted from formalin-fixed and paraffin-
embedded (FFPE) tumor tissue, thereby only using rep-
resentative tumor tissue with highest available tumor 
content was chosen for genomic DNA isolation. The 
 Maxwell® 16FFPE Plus LEV DNA Kit was applied on 
the automated Maxwell device (Promega, Madison, 
WI, USA) according to the manufacturer’s instructions. 

Conclusions: Our findings support the concept that AFX and PDS belong to a common tumor spectrum. We could 
demonstrate the diagnostic value of DNA‑methylation profiling to delineating AFX/PDS from potential mimics. How‑
ever, the assessment of certain histologic features remains crucial for separating PDS from AFX.

Keywords: Pleomorphic dermal sarcoma, Atypical fibroxanthoma, Sarcomas, Melanomas, Carcinomas, Mimics, DNA 
methylation, Profiling
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Tumor DNAs had a total amount of > 100  ng and were 
suitable for the array-based DNA-methylation analysis.

Genome‑wide DNA‑methylation data generation 
and pre‑processing
The tumors were subjected to Illumina Infinium 450  k 
BeadChip or the successor EPIC/850  k BeadChip (Illu-
mina, San Diego, USA) analysis at the Genomics and 
Proteomics Core Facility of the German Cancer Research 
Center (DKFZ) Heidelberg. DNA-methylation data were 
normalized by performing background correction and 
dye bias correction (shifting of negative control probe 
mean intensity to zero and scaling of normalization con-
trol probe mean intensity to 20,000, respectively). Probes 
targeting sex chromosomes, probes containing multiple 
single nucleotide polymorphisms and those that could 
not be uniquely mapped were removed. Probes were 
excluded if the predecessor Illumina Infinium 450  k 
BeadChip did not cover them, thereby making data 
generated by both 450  k and EPIC comparable for sub-
sequent analyses. In total, 438,370 probes were kept for 
analysis.

Unsupervised clustering, t‑SNE analysis, cumulative 
copy number plotting and identification of differentially 
methylated regions
For unsupervised hierarchical clustering, we selected 
10,000 probes that showed the highest median absolute 
deviation (MAD) across the beta values. Samples were 
hierarchically clustered using Euclidean distance and 
Ward’s linkage method. Methylation probes were reor-
dered by hierarchical clustering using Euclidean distance 
and complete linkage. The unscaled methylation levels 
were shown in a heat map from unmethylated state (blue 
color) to methylated state (red color). For unsupervised 
2D representation of pairwise sample correlations dimen-
sionality reduction by t-distributed stochastic neighbor 
embedding (t-SNE) was performed using the 10,000 most 
variable probes, a perplexity of 20 and 2500 iterations. 

Copy-number assessment for segmental/entire chromo-
somal changes was done manually based on array data by 
a proprietary algorithm based on the R-package conumee 
after additional baseline correction (https ://githu b.com/
dstic hel/conum ee).

Results
Study cohort
Tumor samples from 61 patients with the histopathologi-
cal diagnosis AFX (n = 17), PDS (n = 15), cSCC (n = 19) 
and BCC (n = 10) were analyzed together with 11 skin 
melanomas and 156 soft tissue tumors. The latter com-
prised 11 angiosarcomas, 13 dermatofibrosarcomas pro-
tuberans, 9 extraskeletal myxoid chondrosarcomas, 11 
leiomyosarcomas, 14 myxoid liposarcomas, 19 malig-
nant peripheral nerve sheath tumors, 21 neurofibromas, 
19 alveolar and 17 embryonal rhabdomyosarcomas, 10 
schwannomas and 12 undifferentiated pleomorphic 
sarcomas of the deep soft tissue. The median age was 
81 years for AFX, 83 years for PDS, 79 years for cSCC and 
77 years for BCC. The AFX, PDS, cSCC and BCC cohort 
consisted of 58 primary tumor samples, two recurrent 
samples and one case with an unknown status. The pre-
dominant side of occurrence was the head region (n = 46) 
followed by the neck (n = 9). AFX and PDS had a much 
higher incidence in male patients compared to cSCC and 
BCC. Clinical data are summarized in Table 1.

Unsupervised genome‑wide methylation profiling reveals 
distinct signatures in dermal sarcomas and histologic 
mimics
Unsupervised hierarchical clustering and t-SNE analysis 
delineated tumors in methylation classes (Fig.  1), which 
also kept stable when varying the number of CpGs using 
for this analysis (data not shown). AFX and PDS were 
indistinguishable by clustering (Fig. 1a) and t-SNE analy-
ses (Fig. 1b). cSCC and BCC grouped in close proximity 
to AFX and PDS. However, both formed homogeneous 
subgroups and therefore were distinct from these in both 

Table 1 Clinical features of  atypical fibroxanthomas, pleomorphic dermal sarcomas, cutaneous squamous cell 
carcinomas and basal cell carcinomas

Category AFX PDS cSCC BCC

Group size (n) 17 15 19 10

Age median (range) [years] 81 (65–93) 83 (60–99) 79 (55–98) 77 (53–87)

Male/female 16/1 13/2 12/7 7/3

Tumor location 10 head, skin 14 head, skin 15 head, skin 7 head, skin

7 neck, skin 1 unknown 2 hand, skin 2 trunk, skin

1 neck, skin 1 neck, skin

1 trunk, skin

https://github.com/dstichel/conumee
https://github.com/dstichel/conumee
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analyses, even though single cases overlapped (Fig.  1). 
Furthermore, we additionally analyzed 167 tumors 
encompassing 12 subtypes comprising different sarcoma 
entities and melanoma, which may mimic the pheno-
type of AFX and PDS. Each of these entities formed a 
subtype-specific methylation class. Interestingly, an obvi-
ous outlier case, initially diagnosed as PDS for lack of 
S100 and other melanoma specific staining (Additional 
file 2: Figure S1), repeatedly assigned to the methylation 
class of melanomas. Applying a targeted next generation 
sequencing panel the tumor demonstrated an activat-
ing TERT promoter mutation, a HRAS G12S mutation 
as well as a BRAF G466E mutation. Sequencing data are 
given in Additional file 3: Table S2.

Cumulative copy‑number profiling revealed 
overlapping patterns between atypical fibroxanthomas 
and pleomorphic dermal sarcomas
We next generated copy number profiles derived from 
the DNA-methylation array data. AFX and PDS (Fig. 2a, 
b) revealed chromosomal imbalances that frequently 
involved losses of 9p (AFX 11/17; 65% vs. PDS 10/15; 
66%) and 13q (AFX 11/17; 65% vs. PDS 14/15; 93%). A 
gain of chromosome arm 8q was slightly more frequent 
in PDS (5/15; 33%) compared to AFX (3/17; 18%). The 
homozygous deletion of the CDKN2A locus on 9p was 
more frequent in PDS (6/15; 40%) compared to AFX 
(2/17; 12%). Amplifications were rare in both AFX (3/15; 
20%) and PDS (2/15; 13%). They were distributed in a 

non-recurrent pattern involving 5q21.3 (FER), 8p11.22-
23 (FGFR1, TACC1) and 13q34 (LAMP1) in AFX, and 
11q13.3 (CCND1) and 12q24.31 (KNTC1) in PDS (Addi-
tional file 4: Figure S2).

Copy number alterations in cSCC were distributed 
similarly to AFX and PDS (Fig. 2c). Chromosomal losses 
were frequently encountered on 3p (8/19; 42%), 13q 
(8/19; 42%) and 9p (12/19; 63%). Interestingly, the 19 
cSCC demonstrated no homozygous deletions of the 
CDKN2A locus (9p). The most frequent gains involved 
3q (4/19; 21%) and 8q (5/19; 26%). Amplifications were 
found in two cSCC involving MYC (8q24.21) and CCND1 
(11q13.3), respectively.

The copy number profiles of the 10 BCCs showed over-
all less frequent chromosomal gains and losses compared 
to AFX, PDS and SCC (Fig. 2d). Obvious amplifications 
and deletions were absent in BCC.

Discussion
Our study demonstrates the predictive power of genome-
wide methylation profiling in sarcomas of the skin (AFX/
PDS) and their histologic mimics. Notably, all examined 
tumor subtypes exhibit specific epigenetic fingerprints 
with one exception. As expected, unsupervised cluster-
ing did not sort AFX and PDS into separate methylation 
groups. This finding is in line with the hypothesis that 
AFX and PDS are part of a common tumor spectrum 
with AFX potentially being a precursor lesion of PDS [3].

●● Angiosarcoma [AS] (n = 11)

● Cutaneous squamous cell carcinoma [cSCC] (n = 19)
●● Dermatofibrosarcoma protuberans [DFSP] (n = 13)
● Extraskeletal myxoid chondrosarcoma [EMCS] (n = 9)
●● Leiomyosarcoma [LMS] (n = 11)
●● Malignant peripheral nerve sheath tumor [MPNST] (n = 19)

●● Melanoma [Mel] (n = 11)
●● Atypical fibroxanthoma [AFX] (n = 17)
●● Basal cell carcinoma [BCC] (n = 10)

●● Myxoid liposarcoma [MLS] (n = 14)

●● Schwannoma [SWN] (n = 10)
●● Undifferentiated pleomorphic sarcoma [UPS] (n = 12)

●● Neurofibroma [NF] (n = 21)

● Rhabdomyosarcoma (alveolar) [RMSa] (n = 19)
●● Rhabdomyosarcoma (embryonal) [RMSe] (n = 17)

●● Pleomorphic dermal sarcoma [PDS] (n = 15)
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Fig. 1 DNA‑methylation profiling in atypical fibroxanthomas, pleomorphic dermal sarcomas and histologic mimics. Unsupervised hierarchical 
clustering (a) and t‑Distributed Stochastic Neighbor Embedding (t‑SNE) analysis (b) of DNA‑methylation data from atypical fibroxanthomas (AFX), 
pleomorphic dermal sarcomas (PDS) and histologic mimics shows a close epigenetic relation to cutaneous squamous cell carcinomas (cSCC). This 
AFX/PDS/SCC methylation cluster clearly separated from the methylation clusters of other diagnostic mimics
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The concept of AFX and PDS comprising a single entity 
is supported by genetic studies [26, 27]. AFX and PDS 
carry similar, but yet unspecific patterns of TP53 and 
TERT promoter mutations associated with UV-exposure 
such as observed in melanoma, cSCC and BCC [3, 26, 28, 
29]. Recently, a next-generation sequencing based study 
on a considerable number of AFX and PDS expanded 
the overlapping mutational pattern to NOTCH1/2 and 
FAT1 [27]. However, only a single whole-exome study of 
AFX has been presented so far [30]. Thus, further whole-
exome/genome studies with larger sample numbers of 
both AFX and PDS will be required to fully understand 
the genetic underpinnings of these tumors.

Copy-number aberrations were found in a compa-
rable frequency and overlapping distribution in AFX 
and PDS. This is in concordance with previous stud-
ies showing recurrent copy number alterations mostly 
involving chromosome 8 and 9 [27, 31]. In addition, we 
found non-recurrent amplifications in 5/30 cases, which 
almost equally affected AFX and PDS. In contrast to our 
findings, a previous study detected amplifications only 
in PDS [31]. Hence, they suggested such markers for a 
tumor progression towards PDS. However, the study 
cohort was mainly composed of PDS (n = 24) with only 
three AFX cases for comparison.

Beside amplifications, we also noticed recurrent 
homozygous CDKN2A deletions in PDS (40%) and less 
frequently in AFX (12%). CDKN2A deletions have been 
recognized as an adverse prognostic marker in a num-
ber of tumors, i.e. in melanoma [32, 33]. Furthermore, 
a link between the susceptibility to checkpoint inhibi-
tors and deletions of CDKN2A was discovered in some 
cell lines derived from SCC of the head and neck region 

(HNSCC) [34]. It remains to be determined whether this 
finding may be adapted to AFX/PDS and cSCC. If vali-
dated in further studies, CDKN2A status might prove as a 
valuable biomarker in AFX and PDS that might open new 
therapeutic avenues in a substantial portion of patients 
suffering from this disease.

Our study does not provide a final decision on the 
ongoing debate regarding the histogenesis of AFX and 
PDS. Many experts assume that AFX and PDS derive 
from a mesenchymal origin [1, 4], whereas others sug-
gest that AFX may derive from an epithelial origin [30, 
35]. This theory was initially introduced by older stud-
ies describing clinicopathological similarities between 
AFX and cSCC with a sarcomatoid dedifferentiation [36, 
37]. AFX similar to cSCC and BCC frequently shows an 
association with actinic skin damage and a close prox-
imity between the epithelium and the neoplastic spindle 
cell population, however without an epithelial dysplasia 
or carcinoma in situ component, which are both features 
and arguments for the diagnosis of a cutaneous spindle 
cell carcinoma with loss of keratin expression [1, 38, 39]. 
Although we noticed a separation of BCC from cSCC 
and AFX/PDS by epigenetic profiling and also a remark-
able delineation between AFX/PDS and cSCC, DNA-
methylation profiles of individual AFX, PDS and cSCC 
were overlapping. Thus, the DNA-methylation analysis 
primarily recapitulated the morphology of BCC, cSCC 
and AFX/PDS, which is usually quite distinct.

Correctly distinguishing AFX/PDS from other tumors 
is critical to allocate affected patients to the correct type 
of treatment and follow-up protocols. The current diag-
nosis of AFX/PDS based primarily on lack of expression 
of certain lineage markers. However, there is a constant 
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Fig. 2 Cumulative copy number profiles. Frequency of copy number variations in 17 atypical fibroxanthomas (a), in 15 pleomorphic dermal 
sarcomas (b), in 19 cutaneous squamous cell carcinomas (c) and 10 basal cell carcinomas (d), assessed by automated aberrations profiling
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risk that tumors of other lineages may have lost expres-
sion of diagnostically relevant markers due to dedifferen-
tiation and then may be misclassified as AFX/PDS. For 
certain entities, such as the illustrated example where 
methylation and gene mutation signatures argue for a 
melanoma, misclassification could have significant con-
sequences for the patient [40].

Therefore, it would seem prudent to perform molecular 
testing of cutaneous neoplasms when making a definitive 
diagnosis is not possible based on histomorphological 
and immunohistochemical assessment alone.

Conclusion
Our study demonstrates a proof of concept that DNA-
methylation may be a valuable aid in routine diagnostics 
of skin tumors posing a diagnostic challenge with con-
ventional analytic methods. Our data support the con-
cept that AFX and PDS are histologically and molecularly 
closely related and probably belong to a common tumor 
spectrum. We observed a CDKN2A deletion in AFX 
(12%) and PDS (40%), which may represent a potential 
biomarker, if validated in future studies. Copy number 
analysis and DNA methylation profiling can aid in distin-
guishing AFX/PDS from other histologic mimics, even 
though these analyses alone cannot reliably distinguish 
AFX from PDS. The assessment of histopathological fea-
tures such as subcutaneous involvement, necrosis, and 
lymphovascular or perineural invasion still remain criti-
cal in differentiating PDS from AFX.

Additional files

Additional file 1: Table S1. Clinical data. ID—internal identifier, Dx—
diagnosis, Samp—sample, AS—angiosarcoma, AFX—atypical fibroxan‑
thoma, BCC—basal cell carcinoma, cSCC—cutaneous squamous cell 
carcinoma, DFSP—dermatofibrosarcoma protuberans, EMCS—extraskel‑
etal myxoid chondrosarcoma, LMS—leiomyosarcoma, MPNST—malig‑
nant peripheral nerve sheath tumor, Mel—melanoma, MLS—myxoid 
liposarcoma, NF—neurofibroma, PDS—pleomorphic dermal sarcoma, 
RMS—rhabdomyosarcoma, SWN—schwannoma, UPS—undifferentiated 
pleomorphic sarcoma, P—primary, R—recurrence, Me—metastasis, U—
unknown, f—female, m—male.

Additional file 2: Figure S1. Histologic and immunohistochemical fea‑
tures of a pleomorphic dermal sarcoma with a DNA‑methylation pattern 
resembling melanoma. This highly cellular tumor (ID 101138) with brisk 
mitotic activity (green arrows) predominantly presented with a polygonal 
to spindle‑shape appearance and a fascicular growth pattern (a). In a 
circumscribed area the tumor cells were epithelioid (b). Adjacent subcu‑
taneous fat tissue was infiltrated (c) and vascular invasion was observed 
(d). Parts of the tumor were necrotic (e). The tumor cells did not bind S100 
specific antibody, whereas peripheral nerve and few histiocytes were posi‑
tive (f ). The tumor cells were negative for nuclear SOX10 expression with 
peripheral nerve as positive internal control (g), negative for HMB45 (h) 
and MelanA (i) protein expression. Scale‑bars equal 100 µm.

Additional file 3: Table S2. List of gene mutations revealed by panel 
sequencing in a pleomorphic dermal sarcoma with discordant DNA‑
methylation profile.

Additional file 4: Figure S2. Copy number profiles of the three atypical 
fibroxanthomas and the two pleomorphic dermal sarcomas carrying gene 
amplifications.
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m: male.
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