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Abstract

MSCs are hypothesized to potentially give rise to sarcomas after transformation and therefore serve as a good
model to study sarcomagenesis. Both spontaneous and induced transformation of MSCs have been reported,
however, spontaneous transformation has only been convincingly shown in mouse MSCs while induced
transformation has been demonstrated in both mouse and human MSCs. Transformed MSCs of both species can
give rise to pleomorphic sarcomas after transplantation into mice, indicating the potential MSC origin of so-called
non-translocation induced sarcomas. Comparison of expression profiles and differentiation capacities between MSCs
and sarcoma cells further supports this. Deregulation of P53- Retinoblastoma-, PI3K-AKT-and MAPK pathways has
been implicated in transformation of MSCs. MSCs have also been indicated as cell of origin in several types of
chromosomal translocation associated sarcomas. In mouse models the generated sarcoma type depends on
amongst others the tissue origin of the MSCs, the targeted pathways and genes and the differentiation
commitment status of MSCs. While some insights are glowing, it is clear that more studies are needed to
thoroughly understand the molecular mechanism of sarcomagenesis from MSCs and mechanisms determining the
sarcoma type, which will potentially give directions for targeted therapies.
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Introduction
MSCs have been under intensive research and applica-
tion efforts since their first establishment by Friedenstein
and his colleagues in 1968 [1]. Standard criteria deve-
loped by the International Society for Cellular Therapy
define MSCs by three characteristics: 1) plastic adhe-
rence under standard culture conditions, 2) expression of
CD105, CD73 and CD90 and no expression of CD45,
CD34, CD14, CD11b, CD79b, CD19 and HLA-DR and 3)
capacity to differentiate into osteoblasts, chondroblasts
and adipocytes in vitro, termed trilineage differentiation
potential (Figure 1) [2].
Owing to the ease of isolation, expansion, the multi-

lineage differentiation potential and a variety of physio-
logical functions, MSCs are applied in a wide range of
experimental and medical applications. Among them are
the enhancement of hematopoietic stem cell engraftment,
the amelioration of acute graft-versus-host disease, cardiac
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diseases and regenerative medicine approaches for espe-
cially bone and cartilage [2].
Cell transformation is a process during which genetic

changes occur, resulting in cells with the ability to grow in-
definitely and anchorage-independently and with tumori-
genic properties upon transplantation [3-7]. Senescence
has been overcome in these transformed cells [4,8-10]. On
one hand, the potentials of MSCs to transform, to initiate
sarcomas and under some conditions to facilitate tumour
progression are calling for caution for MSC-based applica-
tions [5,11]. On the other hand, the transforming property
of MSCs and their possible role as sarcoma progenitors
make these cells useful for studying sarcomagenesis and
progression. In this review we present an overview of the
roles of MSCs in sarcomas, with a specific focus on
tumorigenic transformation and sarcomagenesis.
MSC transformation
Spontaneous mouse MSC transformation
Mouse MSCs have been consistently demonstrated to
spontaneously undergo tumorigenic transformation after
long term ex vivo culture [4,6]. This transformation
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Figure 1 Trilineage differentiation capacity of human MSCs and
representative types of sarcomas. Human MSCs are capable of
differentiating into osteoblasts, chondrocytes and adipocytes under
proper inductions. This differentiation spectrum corresponds with
the histological spectrum of different types of sarcomas, represented
here by osteosarcoma, chondrosarcoma and liposarcoma. This
correlation supports the hypothesis that MSCs are the cell of origin
of sarcomas. A: alizarin red staining for osteoblast differentiation
assay, B: toluidine blue staining for chondrocyte differentiation assay
of MSC pellets, C: oil red staining for adipocyte differentiation.
D: human MSC cell culture. E: osteosarcoma, F: chondrosarcoma,
G: liposarcoma.
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process can also be induced by certain manipulations,
including both gene targeting and drug or chemical
treatment to affect crucial pathways (Table 1) [11-14]. In
contrast, human MSCs do not spontaneously transform
in vitro, even after long term culturing, which will be
discussed later in more detail [9,13,15].
Table 1 A summary of spontaneous transformation studies w

Transformation after Type of sarcoma Ass

Long term culture

Osteosarcoma Ane

Abn

Fibrosarcoma p53

Chr

Undiff. soft tissue sarcomas Ane

Short term culture Soft tissue sarcomas Ane
Mouse MCSs are reported to spontaneously undergo
changes in morphology, proliferation rate, migration
ability, cell surface marker profile, genomic constitution
and most importantly tumorigenicity after long term
in vitro culture [4,9,20,21]. Meanwhile, one study has
also revealed that mMSCs could transform even after
short term in vitro culture. Injection of passage 3
mMSCs into mice resulted in formation of tumours
comparable with soft tissue sarcomas [19]. Transformed
mouse MSCs always show a higher proliferation rate
than the native cells [3,4]. These transformed cells exhibit
tumorigenicity, as shown by anchorage-independent
growth assay and xeno-transplantation in mice and
zebrafish, while this is not observed with low passage
mouse MSCs before their transformation [3,4,6,22]. Inter-
estingly, the readiness of in vitro tumorigenic transfor-
mation seems to be a unique property of mouse MSCs
since it is absent in most other mouse stem cells, including
hematopoietic stem cells and embryonic stem cells [23].
This readiness can be probably ascribed to the genetic
instability already shown in mouse MSCs very shortly
after isolation from bone marrow, although the cytoge-
netic abnormalities in low passage mouse MSCs are
considerably less in number than in transformed mouse
MSCs [23]. Interestingly, MSC spontaneous transfor-
mation happens much less frequently in vivo, as shown
by the low incidence of spontaneous sarcomagenesis in
mice. This can be possibly explained by the different
microenvironment of in vitro and in vivo conditions for
MSCs. Solid research on the role of the in vivo niche of
BMMSCs in guarding its genomic stability is needed to
answer this question more exactly.

Induced mouse MSC transformation
Transformation of mouse MSCs has been induced by an
array of manipulations, including knockout of tumour
suppressor genes, overexpression of oncogenes and drug
administration to affect signaling pathways. The path-
ways targeted by these manipulations are mostly in-
volved in cell cycle checkpoint control, cell survival,
proliferation and apoptosis (Table 2) [14]. In one study,
loss of tumour suppressor P21 and Tp53 in mouse adipose
derived MSCs (AMSC) induced in vitro transformation
ith mouse BMMSCs

ociated genetic event(s) Reference

uploidy + CDKN2A/p16 loss [4]

ormal karyotype [6]

mutations [24]

omosomal instability + TERT and c-myc expression [16]

uploidy + chromosomal translocations [17]

uploidy [18]



Table 2 A summary of induced transformation studies with mouse cells

Sarcomas without specific chromosomal translocation

Cell type Inactivated
gene(s)

Expressed
gene(s)/treatment

Type of sarcoma Reference

mASCs p21 + p53 - “Fibrosarcoma” [20]

p53 or p53 + Rb - Leiomyosarcoma [7]

BM-mMSCs INK4A/ARF c-myc Osteosarcoma [24]

Osteoblastic lineage p53 or p53 + Rb - Osteosarcoma [32,33]

Mesenchymal cells of limb buds p53 - Osteosarcoma [23]

p53 + Rb - Undifferentiated sarcoma [23]

Muscle, uterus p53 orINK4A/ARF K-RAS High-grade sarcoma with myofibroblastic differentiation [25]

Muscle p53 K-RAS Pleomorphic rhabdomyosarcoma [18]

Smooth muscle lineage PTEN - Leiomyosarcoma [17]

MSC progenitors APC - Aggressive fibromatosis [67]

Sarcomas with specific chromosomal translocation

Cell type Expressed fusion gene Type of sarcoma Reference

BM-mMSCs EWS-FLI-1 Ewing sarcoma [63]

EWS-FLI-1 Ewing sarcoma [65]

FUS-CHOP Myxoid liposarcoma [11]

PAX3/7-FKHR Alveolar rhabdomyosarcoma [71]

mASCs FUS- CHOP Liposarcoma [11]

Mesenchymal cells of limb buds EWS-FLI-1 Ewing sarcoma [65]

Differentiated muscle cells
(MYF6-expressing cells)

PAX3-FKHR Liposarcoma [70]
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and in vivo so-called fibrosarcoma formation after trans-
plantation [24]. In another study, both Tp53−/− Rb−/−
and Tp53−/− mouse AMSCs were generated through Cre
mediated excision of loxP flanked loci. Leiomyosarcoma-
like tumours were developed in the in vivo tumori-
genicity assays of these 2 types of mouse AMSCs [8].
The combination of Cdkn2a loss and C-myc
overexpression in mouse BMMSCs gave rise to osteosar-
comas accompanied by the loss of adipogenic differenti-
ation capacity in transformed mouse BMMSCs [16].
Besides directly targeting in vitro cultured MSCs, several
genetically engineered mouse models have been developed
to investigate the effects of genes on transformation
process. A conditional mouse model with Tp53 homozy-
gous deletion has been created by crossing Prx1-Cre
transgenic mice to mice bearing alleles of Tp53 flanked by
loxP. Prx1 is specifically expressed in the early mesenchy-
mal tissues of embryonic limb buds [17]. In these P53-
deficient mice many types of sarcomas occurred in the
mesenchymal cells of limb buds and osteosarcoma was
the most common type. A mouse model with loss of RB
generated also through Cre-loxP system was not found to
display tumorigenesis. However, loss of RB accelerated
tumorigenesis in P53-deficient mice [17]. These induced
transformation studies established the importance of the
P53 pathway in preventing mouse MSC transformation.
Besides, in spontaneous transformation studies of mouse
MSCs, defects in Tp53 or Cdkn2a genes were frequently
found [18]. P53 and P14, proteins encoded by these two
genes, are both important members of P53 pathway, fur-
ther corroborating the crucial role of P53 pathway in
mouse MSC transformation [4,25]. Upregulated onco-
genic pathways have also been shown to induce or
potentiate mouse MSC transformation. Fos is an oncogene
encoding a transcription factor downstream of many
growth factor pathways. The Fos overexpression trans-
genic mice resulted in the development of bone tu-
mours, with chondrosarcomas as the main type [26].
This is puzzling as the driver mutation in human
central chondrosarcoma is IDH1 or IDH2 [27], while
in peripheral chondrosarcomas this is not known
[27,28], but no indication for involvement of Fos is
found [28,29]. The PI3K-AKT pathway is crucially in-
volved in apoptosis and proliferation. In a study a
mouse model with homozygous loss of Pten, a nega-
tive regulator of the PI3K-AKT pathway in smooth
muscle lineage cells developed leiomyosarcomas [30,31].
The MAPK pathway is principally responsible for mitosis.
Overexpression of K-ras, a component of the MARK
pathway in addition to P53 loss induced sarcoma for-
mation in mice more efficiently than in mice with
P53 loss alone [32,33]. These studies underscore the
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role of different oncogenic pathways to promote mouse
MSC transformation.

Human MSC transformation
Human MSCs have not been shown to undergo spon-
taneous transformation in vitro [9,15,43]. There have
been few reports on spontaneous human MSC in vitro
transformation, of which two turned out to be caused by
contamination by tumour cell lines and were retracted
afterwards [34,35,44]. Meanwhile, there are several stud-
ies demonstrating that human MSCs did not go through
transformation in spite of long term in vitro culturing
[12,15]. For the possibility of in vivo spontaneous trans-
formation, there have been few cases of osteosarcoma
genesis in patients infused with bone marrow MSCs for
other diseases [45-47]. The majority studies of human
MSC transformation are based on genetic approaches to
knock out important tumour suppressor genes and
overexpress certain oncogenes Table 3) [14]. In contrast
to mouse MSC studies, four of the induced human MSC
transformation studies consist of the exogenous expres-
sion of hTERT in human cells [38,48-50]. This may be
attributed to the much shorter telomeres in human
MSCs than their mouse counterparts, the much shorter
life span of mice than human and the difference in telo-
mere damage signaling pathways between mouse and
human [41,50,51]. Consistent with mouse MSC studies,
the disruption of cell cycle control machineries, exempli-
fied by P53 and RB pathways are also important for hu-
man MSC transformation. For instance, the introduction
of SV40-LT, which perturbs both P53 and RB proteins
potently promoted human MSC transformation [38].
Furthermore, the overexpression of some oncogenes has
also been shown to contribute to the transformation,
such as H-RAS [5-7]. Although the definite spontaneous
transformation capacity of mouse MSCs is not a mim-
icry of human MSCs, the signaling pathways underlying
their tumorigenic transformation show high consistency,
including the P53 pathway, RB pathway, PI3K-AKT
pathway and MAPK pathway and so on.

MSCs as the origin of sarcomas and tumour type
specificity
There is substantial evidence supporting a MSC origin
of a spectrum of sarcomas, both pleomorphic as well as
Table 3 A summary of human BMMSCs transformation witho

Type of sarcomas Ex

Undifferentiated spindle cell sarcoma

hT

hT

hT

Tumors with smooth muscle and bone properties hT

Undifferentiated pleomorphic sarcomas DK
translocation driven subtypes. In the non-translocation
-driven sarcoma types, the correspondence between the
differentiation capacity of MSCs and the histological
spectrum of different types of sarcomas is reflected
(Figure 1). Approaches and methods have also been
used to investigate this hypothesis, including differenti-
ation assays, expression profiling and Immunohistochem-
istry [52-54]. Based on the site of presentation, sarcomas
can be categorized into bone tumours and soft tissue
tumours. Based on genetic profiles, sarcomas can be cate-
gorized into two groups, one with relatively simple genetic
alterations, either being associated with point mutations
or reciprocal translocations, and the other with extensive
genetic changes. Examples of the cytogenetically relatively
simple group are alveolar rhabdomyosarcoma, myxoid
liposarcoma, Ewing sarcoma and synovial sarcoma. Exam-
ples of the other group are leiomyosarcoma, undifferenti-
ated pleomorphic sarcoma and osteosarcoma [55].
MSC differentiation towards a defined and differenti-

ated cell type is a process with a lot of different signaling
pathways and differentiation stages involved (Figure 2).
The sarcoma type arising from in vitro transformed
MSCs after inoculation into mice seems to be dependent
on many factors, including the originating tissue of the
MSCs, the differentiation commitment status of the
targeted cell and also the targeted molecular pathways.
In most cases with bone marrow derived mouse MSCs
(BMMSC) or osteochondro progenitors osteosarcoma-
like tumours were formed. With AMSCs or smooth
muscle cell progenitors leiomyosarcomas were mostly
formed (Table 4) [8,16,24]. BMMSCs from aged mice
tend to spontaneously give rise to so-called fibrosarco-
mas instead of osteosarcomas as in most spontaneous
transformation studies [25]. It must be added that
according to the present view fibrosarcomas is a poorly
defined histological entity. It is necessary to perform
large scale studies to specifically address the relationship
between tissue origin, targeted pathways and the sar-
coma type generated, which is currently lacking.

Bone sarcomas
Ewing sarcoma
Ewing sarcoma arises predominantly in bone but in soft
tissues as well. It is a type of a poorly differentiated
tumour known to be associated with a the expression of
ut specific chromosomal translocation

pressed gene(s)/treatment Reference

ERT + HPV16 E6/E7 + SV40-ST + H-RAS [44]

ERT + SV40-LT + H-RAS [13]

ERT + H-RAS + BMI-1 [43]

ERT4 [33]

K1 + SV40-LT [14]
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Figure 2 MSC differentiation scheme. Under different signaling regulations, MSCs can differentiate into different types of cells. The
differentiation process involves sequential signaling regulation and many different stages.
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EWSR1–ETS fusions or rarely other chimeras [59-62].
The exogenous expression of the fusion gene EWS-FLI1
alone in mouse MSCs has been shown to transform
these cells, demonstrated by in vitro immortalization
and in vivo sarcomatous tumour formation after inocula-
tion in immunocompetent mice [63]. In another study a
secondary genetic alteration was needed for the induced
Table 4 A summary of sarcoma types from different transform

Sarcoma type Cell of origin

Osteosarcoma

Mouse BMMSCs

Mouse osteoblast precursors

Mouse osteoblasts

Leiomyosarcomas

Mouse AMSCs

Mouse smooth muscle lineage cells

“Fibrosarcoma”

Mouse BMMSCs

Aged mouse BMMSCs

Mouse AMSCs

Pleomorphic rhabdomyosarcoma
Mouse skeletal muscle cells

K

transformation of mouse MSCs [64]. Similar manipula-
tions have been also applied on human MSCs. Human
MSCs with exogenous EWS-FLI1 expression transformed
and these transformed cells expressed neuroectodermal
markers [65]. Moreover, the knockdown of EWS-FLI1 ex-
pression in Ewing sarcoma cell lines restored the in vitro
trilineage differentiation ability of the cells [52]. In a
ation studies in mice

Targeted genes Reference

- [4]

- [6]

C-myc overexpression and Ink4a/Arf knockout [16]

Tp53, Rb double knockout [56]

Tp53knockout [57]

Tp53 and Rb double knockout [57]

Tp53 knockout [17]

Tp53 knockout [14]

Tp53 knockout [24]

Tp53 and Rb double knockout [8]

Pten knockout [30]

- [58]

- [25]

P21 knockout, Tp53 heterozygous knockout [24]

K-ras overexpression and Tp53 knockout [32]

- ras overexpression and Tp53 heterozygous knockout [32]
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transgenic mouse model, by expressing EWS-FLI1 gene
specifically in the mesoderm-originated tissues in limbs
and simultaneous Tp53 knockout, sarcomas with similar
characteristics as Ewing sarcoma occurred while with only
Tp53 knockout the primary sarcoma type was osteosar-
coma [66]. In brief, Ewing sarcoma, originally considered
as tumours arising from the neuroectodermal lineage and
not considered of mesenchymal origin could be experi-
mentally derived directly from MSCs, but only upon
introducing the typical translocation. This strongly sup-
ports an MSC origin of Ewing sarcoma [67].

Osteosarcoma
Osteosarcoma is the most common primary malignant
bone tumour among children. It is characterized by the
production of osteoid and extensive cytogenetic instabi-
lity [36]. Different studies have supported the MSC ori-
gin of osteosarcoma [4,16]. Both spontaneous and
induced MSC models for osteosarcoma have been
discussed above. Osteosarcomas mainly arise in the
metaphyses of long bones and the peak incidence is in the
second decade of human life, correlating with the rapid
bone growth during puberty, a process in which MSCs are
crucially involved [37]. In both human osteosarcoma cells
and transformed MSCs, frequent aberrations in genes
encoding components of P53 pathway have been identi-
fied [4,39]. In Tp53 knockout mice many types of sarco-
mas developed and osteosarcoma was the main type [17].

Chondrosarcoma
A study compared the gene expression profiles of chon-
drosarcomas of different differentiation degree [53]. Less
differentiated chondrosarcomas were shown to have
more similarity with MSCs of pre-chondrogenic stages
and more differentiated chondrosarcomas share more
similarity with fully differentiated chondrocytes. This sug-
gests that chondrosarcoma progression probably parallels
deregulated chondrocytes differentiation process of MSCs
[40,53].

Soft tissue sarcomas
Synovial sarcoma
In synovial sarcoma, exogenous expression of SYT-SSX2
fusion gene in the skeletal-muscle-specific Myf5 expres-
sing lineage induced the formation of synovial sarcomas
in vivo. Remarkably, when this fusion gene was intro-
duced into cells more differentiated than myoblasts syn-
ovial sarcoma did not occur [68]. This fact emphasizes
the important role of cell status in the genesis of specific
type of sarcomas. On the other hand, fusion gene silen-
cing in primary synovial sarcoma cells restored both the
trilineage differentiation capacity and the MSC marker
expression, strongly suggesting cells of MSC lineage as
the origin of synovial sarcoma [69]. This may be
explained by the fact that although considered as muscle
specific Myf5 can also be expressed in some MSCs du-
ring development.

Other soft tissue sarcomas
Similar results as described above were seen in a mouse
model of liposarcoma, where FUS -CHOP was able to
induce liposarcoma genesis in MSCs, whereas no
liposarcoma was formed when FUS-CHOP gene was
manipulated to be only expressed in differentiated,
aP2-expressing adipocytes. This study again under-
scores the exact cell status as a crucial factor in
sarcomagenesis [42,70]. However other studies show that
there is considerate plasticity in the different lineages since
rhadomyosarcoma, an aggressive skeletal muscle tumour
can be generated from adipocytes by activation of Sonic
Hedgehog signaling [71]. A third soft tissue sarcoma
model is that of clear cell sarcoma, characterized by
melanoma-like features and an EWSR1/ATF1 transloca-
tion. Conditional expression of the human EWSR1/ATF1
fusion gene in mouse gives rise to tumorigenesis with ex-
treme brief latency. The most stem-like MSCs give rise to
fully melanoma-like lesions, whereas more differentiated
cells result in a less clear cell sarcoma phenotype [72].

Discussion
Until now there have not been many studies addressing
the effect of MSCs of different tissues and different ways
of preparation on the role of MSCs as a model for
sarcoma genesis. The conspicuous difference between
mouse and human MSCs in spontaneous transformation
can be possibly explained by many factors. In human
cells, the telomeric DNA is often 5–10 kb long and
mouse cells have a telomeric DNA length of 30–40 kb
[41,51]. The longer telomeres in mouse MSCs allow cells
to proliferate many generations before reaching reaching
the telomere length limit, giving higher chance for
cell to acquire aberrations [41,51]. Since mice have a
shorter life span than humans, the genome mainte-
nance in mouse cells is also less stringent than in hu-
man cells [73].
Niche is one of the most important factors in the de-

termination of stem cell characteristics. The function of
niche in stem cell differentiation and pluripotency main-
tenance is well known. There has also been research
showing that the low oxygen tension is important for
multipotency maintenance of MSCs, while normal oxy-
gen level will induce differentiation [74]. Besides, niche
has also been indicated to be involved in tumorigenesis
[75]. This suggests the important role of niche in ge-
nomic instability and therefore tumourigenetic ability.
One special feature of the bone marrow niche is the
partnership of MSCs and haematopoietic stem cells,
which deserves further exploration [76,77].
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Future considerations
The numerous but well documented studies on MSCs gi-
ving rise to sarcomas in experimental set-up provide ex-
cellent models to study this devastating malignancy in a
systematic and controlled way. This offers opportunities
for preclinical testing of experimental therapies, thereby
providing convincing data that may facilitate application
in actual clinical trials despite small patient cohorts.

Conclusions
Although mouse MSCs have exhibited definite readiness
to transform in vitro, human MSCs do not go through
transformation in ex vivo expansion and need additional
manipulation before progression into sarcomas. There-
fore, although there are few cases of osteosarcoma
genesis in patients infused with bone marrow MSCs
[45-47], it is considered generally safe to use human
MSCs in clinic.
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